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Abstract

The release of diatomic species, in particular AlO, into the upper atmosphere
at twilight results in luminous clouds that display the resonance electronic-
vibrational -rotational spectrum of the released species. The intensity distribution
of the vibrational-rotational bands is temperature dependent. Assuming thermal
equilibrium of the released species with ambient, the ambient temperature can be
determined, Using the A1O molecular parameters, Franck-Condon factors, and
the solar intensity in the upper atmosphere, the population of A1O in the vibrational
and rotational levels and the relative band intensities are calculated, tabulated, and
charted. These charts will be useful for upper atmosphere temperature measurc-
ments from AlO luminous clouds.




Foreword

This report was prepared for the Air Force Cambridge Research Laberatories
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Because of its importance as a guideline for upper atmosphere temperaturc
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AlO Resonant Spactrum for Upper Atmosphere
Temperature Determination

LOINTRODE CTION

In recemt yvears, rocket releases of TMA (trimethyl aluminum) trails were
performed for wpper atmosphere wind studies, When the TMA is released into the
atmosphere, it reacts with atomic oxygen in a chemiluminiescent reaction formiag
AlO {(aluminum-maonoxide), If the trail is exposcd to sunlight, a brilliant spectrum
is ubtained of the blue-green system of A0 (ASS? - X°st) (Blan.ont et al, 1906l;
Armstiong, 1903; and Rosenberg et al, 1944),

Ancther way of crvating AlO is 1o release an explnding charge secded with
metallic aluminum into the upper atmosphere (Auihier et al, 1862, 1963 Arm-
strong, 193 and Harang, 19ed),

The vibratiotal -rotational band intensity distribution of the AlO spectrum is
temperature dependent. The temperature of the upper atmosphere can be deter-
mincd through analysis of the AlO spectrum (Authicr ot al, 1862, 1963, 1964;
Harang, 1%c4; and uthier, 1963),

2. THE \ D WKL LE

Figure | shows the torm diagram of the AlO molccule, with transitions indicated.

(Reccived for publication 15 April 19%8)
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Figure 1. Term Diagram of the A10
Molecule

The only electronic transition recorded in rocket releases is the "blue-green”
system A2zt X2zt The ultraviolet system B%r-A2Z isina spectral region
where photoclectric sensitivity drops appreciably. The intensity of the ultraviolet
system is expected to be weak, because the solar radiation intensity at 3000 A s
one fifth that at 5000 A: if the f-values of the two transitions are the same, the
absorption intensity of the blue-green system should be five times stronger than
the ultraviolet system.

The red system, which shows up only together with the ultraviolet, is expected
to be far weaker than the ultraviolet because of the v3 factor in the Einstein coeffi-
cient. In the present model, only the blue-green system is considered in resonance
radiation, neglecting possible filling up of the A2zt level from the Blw level.

Figure 2 shows the twe electronic-vibrational levels and the vibrational-
potential curves plotted as a function of internuclear distance. Each vibrational
level is built up of rotational levels, The position of a certain eleetronic-
vibrational -rotational level, T, is expressed by the quantum numbers of the
clectronie, vibrational, and rotational state.
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Figure 2, The A2=t and X2zt Levels

T(n,v,K) = Teg(n) + T, (n,v) + Tk (n,v,K)

where
T, (n,v) = o (v 1/2) + wx (v 1/2)2 + wy (v+1/2)°
Tk (n, v,K) = BK(K+1) + D K2(K%+ 1)

B, = By - alv 1/2)

Dn 4Bg/wna .

The molecular parameters T, w, Wyr Wy Be, and o are taken from a survey
of the A10 molecvle by Tyte and Nicholls (1964),
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In this report, the following set of parameters was used:

State Te w Wy wy Be @
A%zt 20.¢8895 870.05 3.52 0.0 0.6040 0.0044 cm-!
x2gt 0.0 979.23 6,97 0.0 0.6413  0.0058 cm-!

3. THE POPULATION OF v” LEVELS IN THE GROUND STATE

Following the formation of A10 molecules, they will collide with air molecules,
and the populations of the different rotational and vibrational levels will be given by

the Boltzmann distribution law,
For vibration levels

N"

v = Q! exp - (G (v")/0.6958T),

where

Q, = 3, exp - (Go(v"/0.6958T),
and

Gy (V) = (W - wx) V" = wy ()2,

For rotational levels

Ngr = (2K" + 1) Qg-1 exp - (F (K")/0.6958T,

where

Qg = z, (2K" + 1) exp - (F (K" /0.6958T,
and

Fg = BK"(K"+1) - D(K"? (K"+ )2,

Figures 3 and 4 show plots of the populations Nyn and Ngn asa function of

the levels and for different temperatures. Here N » and NK" are normalized,

SN =32 N, =1,
V" V" K" K
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Figure 3. Population of Vibrational Levels of AlO

4. SOLAR INTENSITY

To compute the absorption rates, we need to know the photon intensity of the
solar radiation on the top of the atmosphere., Figure 5 shows the intensity meas-
ured in photons cm-? sec‘l/(cm‘l) and in photons em~2 gec~l Hz"! as a function
of wave numbers, The values are deduced from the Handbook of Geophysics (1960)
integrated over intervals of 50 Aand 100 A. including the Fraunhofer lines that are
about 0.1 to 0.5 ;\ wide.

The rotational lines of AlO are about 0.5 A apart, except at the bandhead.

For vibrational analysis, thc entire band intensity is measured, covering
about 20 to 30 A. Solar intensities averaged over 20 to 30 A do not deviate much

L
from values averaged over 50 A,
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Figure 4. Rotational Population of the Ground
Vibrational Level v* = 0 of AlO

The emission from a certain v' -level is caused by absorption from several
v"-levels, so this will tend to smooth out the deviation from the averaged solar
intensity at the wavelength of an individual transition,

There exists one strong and broad Fraunhofer line, H B which happens to lay
just on the P-branch of the 0-0 transition, For 600°K this correction amounts to
less than 10 percent of the branch, which is less than 5 percent for the entire 0-0
transition,

For rotational analysis, it is of importance to consider the Fraunhofer correc-
tion of solar intensity for those rotational lines which are strong in absorption.
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Figure 5, Photon Intensity on the Top of the Atmosphere

5. THE ABSORPTION-EMISSION PRNCESS

In order to compute the theoretical intensities of bands and lines of an assem-
bly of AlO molecules in the upper atmosphere exposed to solar radiation, the fol-
lowing model is considered,

A short time after formation of Al0, the molecules will attain thermodynamic
equilibrium with the atmosphere, and the vibrational and rotational levels will have
a population according to the Boltzmann distribution law.

The molecules undergo a resonant absorption followed by emission. The tran-
sition probability is in the order of 107 -108 sec-1,

The emission-absorption processes will tend to perturb the thermal distribu-
tion of the lower levels, It is assumed that the rate of the absorption-emissicn
process is relatively slow, so that there is a sufficient time lapse between each

RSN e e
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absorption-emission process per molecule to allow the molecules to readjust to
the Boltzmann distribution through collisions with atmospheric molecules.

This depends on the f-value of the electronic transition of the A10 molecule,
the collision frequency in the upper atmosphere, and the cross section for colli-
sional deactivation of vibrational levels,

The rate of excitation from level X to level A is expressed by:

dN, 2 3
A = Ny X1eé 8 =Ny 832 S(AX) ¢ v
dt X "me fxa 9, X The gx v

where 6 is the solar photon intensity, which is about 400 photons em-2 sec-! Hz"!
in the region where AlO absorbs. The f-value is unknown, but it must be reason-
ably large because the trail is almost as brilliant as a sodium trail. The density
of sodium atoms in such trails is probably of the same order of magnitude as that
of AlO, and the f-value of sodium is 0, 98,

If fo is in the order of 0.1 to 1, there will be about 1 to 0,1 absorptions per
second per molecule, which leaves the molecule about 1 to 10 sec to attain thermal
distribution between each excitation.

The number of collisions required for thermal redistribution varies within
large limits. The collision frequency in the upper atmosphere is 2 to 3 X 103 sec-!
at 100 km, 20 collisions sec™! at 150 km, and 10 collisions sec’lat 170 km, ac-
cording to the U.S. Standard Atmosphere 1962. This problem is further discussed
under Section 11,

The line strength S(A,X) for an allowed transition is defined as:

SLX) = [RyyP = lcalplx 52

where P here is the dipole moment. The degeneracy Ex of the lower state of AlO
equals two (doublet).

The electronic levels are composed of vibrational levels, and the expression
for absorption from a lower level v' to an upper level v" is

dN 3
- 8 v T T~ )
m Ny N.. The vivi, v') S(v', v*) 6 (v', v").

Here the band strength is (Tyte and Nicholls, 1964):
S(v', v*) = Ro2(1-0.46 F(v', v?))2 q(v', v").

The vibrational levels are in turn composed of rotational levels. The rate of
population of an upper rotational level K' from the lower level K" is




dNyer 3 v el
T = g Ny Mo G0 v, K v, k9 st v SERER,

The transition considered for AlO is A2Z+-X2z+, thus K' - K" can only have
values of + lor -1,

K'- K" = -1 (P-branch), S(K', K") = K' +1 = K"
K'- K" = +1 (R-branch), S(K', K") = K' = K" +1

In emission, the rate of electronic transitions from A to X is:

N oA e BT xsax
A Aax = Ny — L o

Here the degeneracy g A also equals two.
The rate of vibrational transition is:

dNy: _ Ny N, 64 14 v(vt, v1)3 S(v', v*) ,
dt 3hc3

and a similar expression for a rotation transition is:

dNK' 4 ' " 3 )
= Np Ny» Ny .64*' viv', K', v', K") S(v', v*) S(K', K') .
dt 3he3 2K' +

6. THE VIBRATIONAL SPECTRUM

The population rate for level v' caused by absorption is:
dN
—Y e an S(V'. vt) viv', v') g(v', v').
dt v
The depopulation rate caused by eraission from an upper level v' is:
de' a Nv' Z viv, v")3 S{v', v*).
dt v

Thcese two rates are equal in dynamic equilibrium and we can deduce the relative
population as
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N o J"
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Figure 6 shows the plots of the relative population Nv'/Nv' =0 28 a function of
temperature,

Having computed the values of Nv./N » the intensities of the bands can be

v=0
computed:;
b N . t, y" 1, oyn ', ow"
I{v', v") y"' v S(v', v vivt, v )9(;, v .). S(v', v") v(v', V")3 .
Z sv, v vy, v)

» b bybeo

l !

— St )oqiev") (1-0 46 Hviv))
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Figurc 6. Population of the Upper States for Various Temperatures
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Figure 7 gives the relative intensities of bands within the Av = -1, 0, and + 1
gequence as a function of temperature, The sequence which is the most sensitive
to temperature variation is the +1 sequence. Unfortunately, the intensity of this
sequence is the weakest of the three sequences (see Figure 8). The strongest one,
the Av = 0 sequence, shows almost no temperature dependence.
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Sequences of A0 as a Function of Temperature
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oo INTENSITIES OF TOTAL SEQUEMES

So far, the band intensities within cach sequence and their temperature varia-
tion were deduced. There is also a temperature dependence of the total intensity
ratio of different scquences,

Using whe intensitics computed in Section 5, all the intensitics within cach
scequence can be added. The intensity ratios Av = -1/Av =0 and Av = +1/Av = 0
are plotted in Figure 8 as a function of *emperature,

The advantage of measuring the sequence intensitics is that is it not necessary
to use a high-resolution spectrometer. A photameter with interference filters of
50 A half-width will suffice.
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The optical throughput of a photometer can be made very big compared to a
spectrometer, and the intensities can be measured with high precision.

In order to deduce temperatures, the filter profile must be known as well as
the transmission of the optical system and the sensitivity of the detector, But even
without precise knowledge of these constants, we can record va.iations along trails
and obtain a temperature profile, although an absolute value of the temperature
might be difficult to obtain,

It is noticed that there is very little temperature dependence for temperatures
below 500°K.

8. ERRORS INVOLVED IN THE COMPLTATION

The accuracy of the computed intensities depends mainly on the following items:

1. The validity of the model adopted, that is, complete thermalization of the
lower v®-levels between each excitation-emission event, and

2. The accuracy of the parameters used in the computation.

The purameters used are as follows. The transition strength S(v', v*) ex-
pressed by the product of the Franck-Condon factor q{v’, v*) and the electronic
trangition factor (1-0.46 (v, v"))z. and the intensity of the solar radiation cor-
rected for the Fraunhofer absorption lines 6(v', v*).

Until recently, all temperature deductions were based on the approximation
that the transition strength S(v', v*) is expressed by the Franck-Condon factor
q{v', v*) without the r-centroid correction.

The five curves in Figure 9 illustrate how the relative intensities of bands are
affected by some adjustment of the trangition strengths and solar intensities.

Curve 1. The transition strengths S(v', v*) were calculated usinrg the q(v*, v*)
values with r-centroid correction. The solar intensities were obtained from the
Handbook of Geophysics (1960).

Curve 2. Transition strengths as in Curve |, but with solar intensities equiva-
lent to those of a blackbody at 6000°K. .

Curve 3. Without any r-centrofd correction, F = 0, but with the same solar
intengitics as in Curve 1,

Curves 4 and 5. With the intensity ratios computed by Authier (1964) and Arm-
strong (196 3) respectively, where the transition strengths S(v*, v*) were calculated
using only the Franck-Condon factors.

From the five curves in Figure 9, the following conclusions can he reached:

1. The intensity ratios are not very sensitive to errors in the solar intensities.

2. The r-cemroid correction is important. Without this correction, the de-
duced tempe ratures will be far too high (about 300°K for the -1 sequence and about
100 'K for the 0 scquence).
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3. There are some discrepancies between our computed ratios and those taken
from Authier (1964) and Armstrong (1963). The latter are shown as dashed curves.

I 8(v',v") from Handbook of Geophysics (1960)
2 @(v',v") trom o blackbody at 6000 *K
0- 3 without T-centroid correction
4 Authlier (1964)

5 Armstrong (1963)

INTENSITY RATIO
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D+ 1(3,2)71( 1,00
- i X e i
0 200 400 800 800 1000 1200 1400
TEMPERATURE °K
Figure 10 Inteasity Ratio of Bands Within the Av = 41 and -1 Sequence as a

Function of Yempoerature




15

9. THE ROTATIONAL INTENSITY DISTRIBUTION

The rate of absorption into an upper level K' is

dNg!
— 5 Z Z Ny Ny» Ngo 3 —8—— viv, K, v, kM SELED o ke, o, k1)

= N, S(v', v')|N K+l v(v, K, v", K'+1) 0p +
3th v )[K“zxn P

+ Nkt .1 ZK'-l v(v', K', v*, K'-1) GR]
3 " n
= X%;;-A(V'. K'), where Ngw = -ZKQ—:'{—I exp -(O‘F :;’ZT) . (1)

The rate of emission from an upper level K' is

dNyet 4 LI 7
—.—K _Z Z NA N\,y NK' _(;.}%3. V(V', K', V", K")3 S(V', Vﬂ)M

at K" v ZK'-I-I
- 6411'4 NV' NK' ' u[ ' . . " , 3
=MA 303 R A1 G SO VI D v KL v KR

+ K v, K', v, K -1)3] = NA%::_;N"" Nk! Z—}E'L_H Bt K). (@)

These two rates are equal, and the population in the upper states is, therefore,
given by

NN|N.-“‘-1— NL2K+1A_(L_K'_1 3
ATy UK g3 ( ) B K )

The theoretical intensities are

' BT .812__(__.._K_)A V! T ' " ' " 3
Itv', K',v',K") = Nx he E(v K)S(v v?) S(K', K") v(v', K', v', K")° (4)
with
= 813 AL, K'). (v, v1) . (K' Culvt K'Y vt K'-1)3
Ip = Nx %e EGvK) S(v', v*) . (K'+1) . v(v', K', v*, K'-1) (5)

and

= Lé_(\_..l___) N < “ ' " ot 3
IR =Ny e EGT S(v', v') . K . v(v', K, v", K'+1) (6)
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In order to compute Ip and Ip» we must know the solar intensities corrected for
Fraunhofer lines for transitions which are strong in absorption.

We select only the following vibrational transitions which have to be corrected
for Fraunhofer absorption: v' -v* = 0-0, 0-1, 1-0, and 1-1. Thus, about 500 lines
of importance are obtained.

10. BAND PROFILES

Using Eq. (4) for the theoretical intensities of the lines, the band profi’es for
different temperatures can be computed. .

To be able to compare these band profiles with the recorded ones, a convolu-
tion with a known slit function is performed., The empirical slit function is obtained
by letting the spectrometer scan a single line.

Figure 10 shows a group of theoretical spectra for temperatures ranging from
300°K to 900°K, all smeared with a slit function of 2.5 A width, The spectral range
is in the domain of Av = 0, with three vibrational transitions,

Figure 11 shows band profiles from the Av = +1 sequence, smeared with a slit
function of 4.5 A width. The band profiles were corrected for Fraunhofer absorption.

100 - —

- L]

A10 (Av=0) D
2; 500°K :

L 3; 600°K
4; T00°K
3; 800°K
6; 900°K
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4840 80 e 70 ) %0 49004
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Figure 10. Synthetic Spectrum of the Av = 0 Sequence for Various Temperatures,
2.5 A Slit Function
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Figure 11. Synthetic Spectrum of the Av = +1 Sequence for Various Temperatures,
4.5 A Slit Function

The effect of Fraunhofer absorption on the emission bands is demounsirated in
Figure 12 for a temperature of 700°K. These profiles were obtained by using the
same slit function as for Figure 10. . It is seen that the two profiles differ appreciably.

11, RADIATIVE DYNAMICAL EQUILIBRIUM

The deduction of temperatures from spectra is based upon the assumption that
the molecules undergo a sufficient number of collisions to thermalize their distribu- -
tion of vibrational levels between each excitation-emission process.

To see what the vibrational spectrum would look like were this not the case, we
assume now that the rate of collisional redistribution is very slow compared to the
rate of excitation followed by emission,

The rates of the electronic transition into and from an upper level are,

respectively:

! 32 dN! 453
E‘_I:JA. = N 87 Y RC§ and -4 = N. 64 =2 92 RZ .
[ dt in A 3ne e & dt out A 3he3 ¢




i .. oo

18
e 100 F
_ ! A10 (Avso0) r00°K
é - T Wity FRAUNHOFER CORR
§' 10

T

A
4840

o8

:
&
g

Figure 12. Effect of Fraunhofer Correction on Synthetic Spectrum

WP P Tl A S

These two rates must be equal for stationary-state conditions:

N

r 2 o)
y: U NA 81!’;2 gv'

Taking into account the vibrational levels, the rate of transitions into an upper
level v' is equal to the rate of transitons from that level:

ZN; v. S.. 6. =N®&) s . 3.
]

Here

V(Vliv Vg)» 0-

ij = 6 (vi, \'3').

V..
1]

and

Vo 2 YT 14 e
5, = S, \3) = IR(‘! (1-0.46 F(v!, \;)) qlvi, \-j).
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For the lower level, we obtain the equation

" -
Nz;ml mlml' ZNn nl nl'

By eliminating N' and N" between the two systems, two sets of homogeneous
equations are obtained, the solution of which gives the relative vibrational popula-
tions N; and N'j' in the upper and lower electronic state.

- 3 =
where Wik = Sik Vik and Urnl = Sml Vml eml .

Let us consider values of v\ and v' from 0 to 7. The two systems are homo-
geneous sets of eight equations each, and it enables us to deduce the relative values
of Nv'/Nv' =0 2 N /Nv,,_ Figure 13 shows the values of Nv'/Nv' =0 plotted
as a function of v' (the trace marked "8 levels").

Our system is limited to eight equations, and it is an open question if it is
sufficient. In order to see the trend, we reduce the system to six and then to four
equations, which we solve.

Figure 13 shows that the curves marked "6 levels" and "4 levels" do not devi-
ate much from the "8 level" curve, which indicates that the system is sufficiently
large.

Comparing Figure 13 with Figure 6, it is seen that the assumption of solar
radiation equilibrium leads to relative populations in the upper vibrational levels
which are far greater than those obtained by assuming thermal equilibrium with
the ambient, Since the number of collisions required for vibrational thermaliza-
tion is usually large (102 - 10%), it would appear that the vibrational temperature
will be equal to ambient temperature at altitudes up to 120 km, where the colligsion
frequency is about 150 sec” 1, However, experiments performed by Blamont et al
(1961) and by AFCRL (to be published) indicate that plausible temperatures can be
deduced from clouds deposited as high as 170 km (approximately one collision sec-!),
This means that most of the upper state molecules are excited from thermalized
ground state molecules. This could be due to continuous formation of AlO from
the released TMA. Clearly, the rate processes have to be examined in more detail
for accurate temperature measurements,
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Figure 13. Relative Population for the Case Where
Lower Levels are not Thermalized

It is also questionable if the population is sensitive to errors in the value of
the transition strength S(v', v*). By leaving out the r-centroid correction, the
values of S(v', v") become cqual to the Franck-Condon factors. The solution of
the sct of equations based on this simplification is indicated by a dashed line in
Figure 13, It doecs not deviate much from the other one,

The solar intensity changes within the range of the spectrum of AlO by a factor
of ten. To determine how the population is influenced by the shape of the solar in-
tensity curve, we let the intensity be constant and obtained the curve marked
"o (v', v*) = constant.” A small inaccuracy in the solar intensity curve would not
greatly change the N, /N, = 0 values.
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